

Faculty of: Sciences & Life Sciences Course: Bachelor of Science (Mathematics) Semester: II Subject Code:MAM204-1C Subject Name: Numerical Analysis

Teaching hours/ Week				Evaluation Scheme/ Semester													
a			Credi	Theory			Tutorial / Practical										
Sr No	listegory	Subjec t Code	Subject Name	Th	Tu		t hours	t Points	s Comprehensive Exams Assessment Ex			emester ams	Total				
									Ma	Marks	Mar	Duration	Mark	Duration	Mark	Duratio	
									rks		ks	Duration	S	Duration	S	n	
2	MAJOR- II	MAM2 04-1C	Numerical Analysis	3	-	2	5	4	10 10 05	Assignment MCQ Attendance	50	2	25	1	-	-	100

Course Objective :

The main objectives of this course are

- Find the Lagrange Interpolation Polynomial for any given set of points.
- Use finite differences for interpolation, differentiation, etc.

COURSE CONTENTS

Course Outline for Theory

UNIT	COURSE CONTENT			
Ι	Error in calculation and calculus of finite differences, interpolation. Significant error, Relative error, Estimation of error, Application of error formula. Forward differences, Backward differences, Shift operator, Polynomial in factorial notation.	15		
II	Interpolation: error in interpolation, Newton's forward and backward formula, Central difference, Gauss's forward and backward formula.	15		
ш	Stirling's interpolation formula, Bessel's and Everett's formulae, Lagrange's formula, Divided difference, Newton's divided difference formula, inverse interpolation, its application.	15		

Course Outline for Practical

SR. NO	COURSE CONTENT	Lab Hours			
1	Problems based on errors, Newton's forward, backward formula				
2	Problems based on Gauss's forward, backward interpolation formula.				
3	Problems based on Sterling's formula, Bessel's formula, Laplace Everest's formula	30			
4	Problems based on Lagrange's formula, Newton's divided difference formula.				

TEACHING METHODOLOGY:

Conventional method (classroom blackboard teaching) ICT Techniques Teaching through the classroom Variety of learning styles and tools (PowerPoint presentations, audio-visual resources, e-resources, seminars, workshops, models)

LEARNING OUTCOME:

After the successful completion of the course, students will be able to

- Analyse errors and have an understanding of error estimation.
- Be able to use polynomials in several ways to approximate both functions and data, and to match the type of polynomial approximation to a given type of problem.
- Be able to solve equations in one unknown real variable using iterative methods and to understand how long these methods take to converge to a solution.
- Derive formulas to approximate the derivative of a function at a point, and formulas to compute the definite integral of a function of one or more variables.
- Choose and apply any of several modern methods for solving systems of initial value problems based on properties of the problem.

Units		Duration Hrs.)	Cre	ation of edits mbers)	Total Lecture Duration	Credit Calculation
	Theory	Practical	Theory	Practical	Theory+ Practical	Theory+ Practical
Unit – 1	15					
Unit – 2	15	30	3	1	45+30	4
Unit – 3	15					
TOTAL	45	30	3	1	75	4

Arrangement of lectures duration and practical session as per defined credit numbers:

Evaluation:

Theory Marks	Practical Marks	Total Marks
75	25	100

REFERENCE BOOKS:

- 1. Numerical Analysis and Computational Procedures', **S.A. Moolah**, *New Central Book Agency* (*P*) *Ltd.*, *Calcutta*.
- 2. 'Elementary Numerical analysis', S.S. Sastry, Prentice Hall, New Delhi.
- 3. 'Numerical mathematical analysis 6th edition', **Scarborough**, *Oxford & IBH*.
- 4. 'Numerical analysis', **S.Kunz,***Mcgraw Hill Book New York*.
- 5. 'Numerical Analysis', **Richard Burden and J. Douglas Thomson**, *Cole Pub Co; 6th edition* (*December 24, 1996*)